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Novel switching processes in optical Listable models of homogencously or inho-
mogenecously broadened 2-level atoms placed in ring cavity with atoms in contact
with normal or squeczed vacuum reservoirs are investigated, ‘Uhis s done through
computational examination of the relevant jnput-outrput relationship by stmultane-
ously varving the atomic and cavity detuning parameters for fixed values of the
mput taser field.
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1 Introduction

I optics, bistable heliaviour of & physical system is mainly due ro a deviee {driven
optical cavity) filled with a nonlinear medium together with the action of a feedback
process (provided by the cavity mirrors). For proper choice of the svstem paramc-
ters. the input-ouiput ficld relationship exhibits bistable {or multistable) behaviour.
Such a bistable device with certain nonlinear materials has many potential applica-
tions[1.2} among which is the switching operation {switch-on and -off) between the
two stable states of the ontput field.

The basic optical bistable (OB} absorptive model of homogencously 2-level atoms
placed Ina ring cavity at exact atomic and cavity resonances {ie all three frequen-
cies of atomic transition. mput laser field and the single cavity mode are equaly has
been analysed by Bonifacio and Lugiwto’3. This was subscquently gencralisod 4.5]
to nclude the dispersive offects {Le. both atomic transition and cavity mode fre-
quencies are detuned from the input field frequency)- as well the inhomogencous
broadening of the atomic transition. Regions of bistability were identified analyti-
callv for non-zero values of the cavity and atomic detuning parameteors.

i the case where the 2-lovel atows ts in interaction with a broadband squeczed
vacuur: {SV) field the authors of [Gi-also see |7 - investigated the " phase switching”

effeet where for tixed values of the input ficld and by varving the phase of the SV



fietd the output ficld exhibits either one-way or 2-way switching oflect. Also. for a
niesoscopie (non-dissipative} mmltistable system!8,9, it has been shown that for o
fixed value of the input field and by varving the atomic cooperative parameter ('
(which comprises the atomic density) the outpnr field exhibits multiple ™ cooperatine
swetchang”™. Similar cooporative switching process for OB model of dissipative 2-level
atoms in the normal vacuum {(NV] and SV fields has been analysed in'10).

It our presentation. we investigate further switching effect. namely. the 7 s
perswe switching” in the output ficld at fixed value of the input {ield by varving
somultancously both atomic and cavity detunings with the same amount (sanme oy
opposite sign}. We exainine the two main OB models of homogencons 2-level atoms

i NV and SV fields. The case of inhomogeneous broadening is also examined.

2 Homogeneously broadened atoms

2.1 Normal Vacuum Casc:

For the OB model of Lhomogeneously broadened 2-level atoms in a ring cavity for
Fabry-cavity) within the spatial mean field approximation and for non-zero atomic
and cavity detunings the characteristic input-output field relation is of the nor-

malised form 4,50,
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The notations are: X, Y are the dimeusionless output and input field intensities
respectively. s the cooperative paranieter, # and ¢ are the normalised cavity and
atomic detuning parametors respectively,

Now. we observe that for # = Ad. where A is a +ve or -ve number, equ(l) is a
cubic equation in 6 and hence for fixed values of ¥ and certain range of 4. the output
field X will show a bistable behaviour and hence switching effect. Since both X and
& I equll] (for # = Aé) ocour as cubices. it s not casy to analyse mathenatically the
range in which switching effect mav oceur. Hence our investigation is computational
just as in the SV case 16,7

The 3D plotof (V. X §) for O = 5. = 4 is given in Fig(la). The contour plot of
X with 0 to be refered vo as dispersive switching diagram, at fixed iupat field Y = 35

s givens m Figllh): as inverted omega or mushroon shape. In this case we have two
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bistabic regions in the intorval 0.28 <8, < 0.56. If we plot the input-output Held
(X, V) at fixed # = 4 = 0.5 (Fig(lc)) then at ¥ = 35. X has two stable (lower and
upper) values corresponding to points Py Py {the point P i8 unstabled, Fial1h)
shows hiow these points move as 4 varies. As ¢ increases, 7 woves until it reaches
the unstable point 4; and the system then switches on to the stable right upper
branch and staving on that hranch with further inercase in 4.

Note, i at the point £ in Figi1h), & decreases then the system similarly switches-
on at sy to the stable feft upper brauch. The movement of point Py on the upper
branch in Fig(1h) shows that the svstem will switch-down at Ay, to the stable lower
oranuch-but the further decrease in & will cause the svstem Lo switch-up at 4, 1o the
upper left stable brancli. Hence, we have two-way dispersive switching effoct.

For inercasing value of 7 = 10. # = 4. T'ig(2] shows the corresponding hehaviou:.
where the 3D plot shows a pronounced peak, and for fixed ¥ — 90, the switching
diagram shows only onc-way switching (switch-upl: The point £ on the isle in
Fig(2l} moves to the unstable point 4,045} by increasing {decreasing) the value of
d where the system switches up to the single stable upper branch. The movement
of the point F3 on the upper branch will only cause a change i X with peak vajue
at d = 0 but no jumping effect occurs. For # - —d the corresponding disparsive
switching diagram for C = 3. 10, Fies{3ab). are cssentially the inverse of Figs{1h.2h)
with qualitative difference for the fived valnes of ¥oand the stable lower branch i

Figi2h) 1s almost flat.

2.2 Squeezed Vacuum Case:

In the case whore the 2Z-fevel atoms are in contact with 8V fiold. the characteristic

relation(11 is generalised to GTJ
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where hy = 1 ~ ]-I‘:f\l cos{ed, by = %ﬂ—’ ¢ — @ — 2095 18 the relative phase of

the SV field, with respect to the input field, The SV paramerers N {average plioton
Yo NN+ 1)

number) and M = |M|c™ {degree of squeezing) ave related In 1Af
for ideal squeezing,
In Figi4a), we show the dispersive switching diagram for & = 10, & — (.1.

@=L f=0aat fixedd ¥ = 70, with (X - ¥} relation at # = d = 0 shown in Figidh).



The movement of Py oas ¢ ncreases will lead to switch-up at the unstable point A4,
to the right upper stable branch where further increase in 4 resulrs in decrease of X
but decreasing & will lead (o switch-down ar 4y to the stable lower hranch. As for
point Py oon the wolated isle, the ncrease or decrcase in 4 will result in switching-
down process to the stable lower hranch where further increase {or decrcase’ i o
will lead again to switch-up at poime 4; (or Ay). For larger valne of ¥ = 72, 1he
switching-diagrams in Fig(de) shows the merger of the isolated isle (Fig(4a)1 which
results in multiple switch-up and -down processes. For ¥ = 80, Fipg(dd). shows two
isolated isles underneath a continuos stable upper branch with possible switch-up
processes anfy. i all these cases, the switching diagram s synimetric with respeet
to . Changing the SV phase to ¢ = £ makes the switehing diagram asvinmetrie in

1

8 (Figs{5}). The case of # = & with o = £ and ¥ = 30 has the effeet to isolate an
asymmetric wsland around & ~ 0 (Fig.6a] to induce one-way switching down effect,
Inereasing Y to 100 causes the merge of tis island with the lower stable branch
and results in an asvmmetric switching diagram of two-way (up and down? effect
{Fig.6h).

3 Inhomogeneously broadened atoms

In the case of inhomogeneously broadened 2-level atoms with Lorentzian distribution
of peak {central) frequency w,. the input-ontput field relation in the general case of
SV field is of the form 10",
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where: g — g1 (N1 = VI4+0V g — (V) = 62 + (o' — g1t A0 H by are delined
2 sigien

v - @ 15 the normalised Loventzian width; and 6 is now the

helow cqui2). by =
atomic detuning (i.e. the difference between the (atomic} peak frequeney w, and
the {laser} mput field frequency.

In the case of Normal vacnun (I = 1. & = 4, by = 0) wo have obtained a
qualitative dispersive switching diagram similar to that obtained in the homogencous
case, The searcliin the SV ease for o' = 1. # = =8, o = Z. & - 0.1 shows that the

]

dispersive switching diapram has assmmateic double OB sliape, Fig(®).



[igure 1: The tiitte evolution of Lo
4  Summary

We have computationally explored the possibility of a new switching effects in OB
models of 2-level (homogencously /inhomogencously broadened) atoms i the pres-
ence of normal or squeczed vacuum (SV) fields. This is done for certain input
field values by simultaneously varving atomic and cavity detuning (4. €} such that
# = Ao, with A constant. The gwitchiug diagram {ontput field vs. dispersive de-
tuning) exhibits a rich of possible one-, two-. multiple-switehing process and even
double bistabde behaviour in the inhomegeneously broadened case with SV feld.
Thus a single dispersive control {as a result of lincarly and simultancously chang-
g hotll atomie and cavity detunings) offers interesting manipulation of switching

effects in optical bistable deviees.,
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Figure{1): For @ = & and (=5, (a)the three dimensional (¢ - X — ¥)-plot, (bithe (8-X}-contour plot at Y=35
and (C)the optical bistable behaviour for 6=0.5.
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Figure(2): For # = & and (=10, (a)the three dimensional (6 - X — ¥)-plot, (b)the (§-X)-contour piot at ¥=80 and
(c)the optical bistable behaviour for 6=0.5.
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—&, the (8-X)-contour plot at (a)C=5, ¥=39 and (b)(=10, ¥=90.

Figure(3): For &
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0.1 ang C=10, the (8-X)-contour plot at (a} Y=70 and {b)the
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Figure(4): For 8

=80

0, the contours at (c) ¥=72 and (d} ¥:
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Figure{5): For0 = &8, ¢ = n/2, N = 0.1 and C=10, {a)the three dimensional {6 — X — ¥)-plot,
the (§-X)-contour plot at (b)¥=80, (C}Y=100
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Figure(6): For #

=100

the (6-X)-contour plot at (a)¥=80 and (b)¥:
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Figure(7): A contour at Y=490,¢' = 1, =0.1,C = 40,6 = -4.¢ =

{(inset zooming view for —1.6 = § < —1.5).

12

ul:t



