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Abstract. In this paper, residual vibration of a servomotor driven
rotating flexible beam is studied. The beam is modeled as an Euler-
Bernoulli beam; it is rotated by a servomotor using triangular velocity
profile (bang-bang trajectory). Analytical solution is also obtained by
using Fourier series expansion of the acceleration of the rotating
beam. Residual vibration amplitudes depend on the beam tip position
at the end of the rotation, which is the function of rise time (the time
to complete the rotation). It is found that if the rise time is the odd
multiple of the beam period 1, 3, 5 ..., residual vibration amplitudes
are maximized. Residual vibration amplitude spectrum shows that for
rise time to period ratios from 1.5 to 2.5, residual vibration amplitudes
are lowered to less than 3% of the maximum residual vibration
amplitude, obtained for rise time, equal to the first natural period of
the beam.
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1. Introduction

Demand for high performance robotic systems quantified by high speed
operation, high end-position accuracy and lower energy consumption has
triggered a vigorous research in various multi-disciplinary areas, such as
design and control of lightweight flexible robot arm. Flexible
manipulators, although having some inherent advantageous over
conventional rigid robots, have posed more stringent requirements on the
control system design, such as accurate end point sensing and fast
suppression of transient vibration during rapid arm movements.
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Point to point position control of a flexible beam is studied
analytically and experimentally in!"%. Equations for a rotating
Timoshenko beam are developed for pinned-free and clamped-free
boundary conditions in"®!. Dynamic modeling and optimal control of a
rotating Euler-Bernoulli beam is studied in'*. Main objective of the paper
was to control the vibration through force feedback control. Condition of
a slewing beam using high speed camera system is studied in!*’. Results
show that the natural frequency of the rotating beam is between the
natural frequencies of fixed-free and free-free beam. Among many!®"!
are also worth to mention which are related to a rotating flexible beam. A
residual vibration spectrum for a rotating flexible beam is studied in!'*.
In this study cycloidal rise function is used to rotate the beam. Closed
loop solution is obtained. Results show that, for frequency ratios of 2, 3,
4 ... residual vibration amplitudes became zero. ‘

Shina and Brennan'"! considered two methods for controlling the
residual vibrations of a translating or rotating Euler-Bernoulli cantilever
beam. Although a beam has an infinite number of vibration modes, when
it simply changes its position by translation or rotation the first mode is
the main contributor to the total response. Thus, the problem can be
reduced to the base acceleration excitation of a single-degree-of-freedom
system. Two simple methods are suggested for suppressing the residual
vibration of such a system without considering any control algorithms.

Input shaping is also a control method that allows much higher
speeds of motion by limiting vibration induced by the refer&ce
command. Vaughan, et al."% analyze the compromise between rapidity
of motion and shaper robustness for several input-shaping methods.
Sorensen and Singhose!'” also studied methods whereby arbitrary
reference commands may be interpreted as input-shaped commands.

In this study, servomotor driven flexible beam is considered.
Triangular velocity profile (bang-bang trajectory) is used to rotate the
beam. Angular acceleration of the beam is approximated by Fourier
series and analytic solution is obtained. Residual vibration amplitudes
depend on the ratio of rise time to the beam vibration period. For ratios of
1, 3,5, ... residual vibration amplitudes are maximized. It is possible to
minimize residual vibration by choosing appropriate ratio of rise time to
beam vibration period.
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2. Formulation
2.1 Equation of a Rotating Beam

Figure 1 shows a rotating flexible beam. Beam is considered as
fixed-free Euler-Bernoulli beam. OXY is an inertial frame, Oxy is a
rotating frame attached to the shaft. & is a rotation angle of the shaft, y is
the beam deflection and m; is the unit mass of the beam per length. The
position vector of m; with respect to the rotating coordinates is
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Fig. 1. Rotating flexible beam model.

F=xi+y (1)

If 7 is derived twice with respect to time remembering that %- =@ jand
t
7 s | |
= =—6@i acceleration of m; will be
t

F=(3-2y0-y0—-x6%)i +(5+2:0+x6-y6%)] ()
Acceleration of m; in the j direction will be
+2x0 +x6 — y6? (3)

Longitudinal vibration is ignored, thenx =0, also nonlinear term y8? is
neglected. Inertial load on the unit mass m, of the flexible beam will be
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p(x) =—m, (j +x6) 4)
When this inertial load is used and E7 is assumed constant then Euler-
Bernoulli equation of the beam will be

4

d .. .
EI dxy_ m,(y+x0) (5)

L =
The governing equation of the motion will be
EB" +m,y =-m,x6 (6)

The mode summation method is assumed for the solution which is
Y0 = 4,(x)q, 1) @
=1

If the orthogonality condition is used and viscous damping is assumed,
equation for the generalized coordinate g; is'"> '*!

r ..
ij;‘ +2§wiq-i +w52qf' =ﬁ9(l‘) ()

I

Here T, is defined as mode participation factor which is
l
[, =-m, |x¢,(x)dx &)
/ 3
M; is defined as generalized mass which is
/
M, =m, 4} (x)dx (10)
0
State space form of the differential Equation (8) can be given as

x| | 0 1 x| | 0 b 1
5| |~e! -2 | x| |[/M, ) ()

In the simulations only first orthogonal mode is considered.
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2.2 Servomotor Motion

Flexible beam is rotated by a servomotor. Velocity profile is
assumed as triangular which is also called bang-bang trajectory.
Triangular velocity profile can be given as

ot)=2Gm;  g<i<h (12)
‘ 2
6() = 26, —2Fno % <r<t (13)

r

Here émax is the maximum angular velocity and ¢, is the rise time. If rise

time # and rotation angle 0 is given, angular velocity and angular
acceleration of the rotation can be calculated as

. 20
B =2 (14)
t?’
§ =2 g<rch (15)
t 2
o =20 Lyey (16)
t 2

2.3 Analytic Solution

Angular acceleration of the beam rotation for triangular velocity
profile is a rectangular wave which can be approximated by a Fourier
series as

01t)=6__ i[sin .1+ %sin 3w, t + ésin Sw,t + jl (17)
/1

Only first three terms are used. @, = :i—ﬁ is the fundamental frequency of

r

the Fourier series which is also the rise frequency of the beam. Equation
(8) can be written again as

G, +2lw,q, + o}q, = L[ém i)[sin ,t+ ls,in 3w, + isin Sm,t+-- :| (18)
M T 3 5

i
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Solution of the equation (18) is

g, = Xoe " sin(w,t + )+ Y A, sin(w,t - @,) (19)
n=1,3,5
w, =w+1-¢* is the damped natural frequency of the beam and
®, = no, . Using initial conditions of ¢,(0)=0 andg,(0) =0, X, and ¢,
will be obtained as |

Y A4,sing,
¢0 — tan—l n=1,3,5 (20)
ZA sing, —— ZA @, COS P,
@i n=1,3,5 @y n=13,5 |
2 2 o
=\/[ ZAH sinc;é”} ( Z A sing, ———ZA @, cos¢] (21)
n=1,3,5 @y p=13,5 di n=1
Here
A;m
A = no; (22) |
" Jm—n)? +(2¢Lmn)?
. 2¢mn
— tan "~ 23
g, =t 28 23)
t, =mT = e Yy
a)i
I'' 4 x
4 =——@ (25)
M.
2.4 Simulation

For the simulation, Equation (11) is solved by using MATLAB |
ODE45 ordinary differential equation solver. Steel beam is used. |
Properties of the steel beam are; elasticity modulus E=207 Pa, mass

density p=7700 kg/m’, length /=40 cm, width 5=24 mm, thickness /# =
0.6 mm. Figures 2 and 3 show the numerical solution of the equation |
(10) for rise time #, =2.2T and ¢, =37, respectively. The period of the |
beam for the first natural frequency is 7 =0.32s (@, =19.73 Hz).
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Damping ratio is assumed as¢ = 0.02. During the rotation, beam was

moving under inertial load, when the rotation stops, the deflection of the
beam (at that moment) became an initial displacement for the beam’s

residual vibration. From the Fig. 2, for ¢, =2.2T =0.70s, beam tip

displacement is very small that is why residual vibration amplitudes of
the beam are small. In Fig. 3, rise time is 3T which is 0.96 s. Beam
deflection at 0.96 s was bigger than the one for 2.2T that is why residual
vibration amplitudes were high. Figures 4 and 5 show beam vibration

during the rotation of the beam for ¢, =2.27 and ¢, =37, respectively.

Solid line is for analytical solution, dashed line is for numerical solution,
which is given in Equation (18). Analytic solution, which uses three term
Fourier series expansion of the acceleration of the beam predicts well the
motion of the beam. Depending on the rise time, beam tip amplitude at

t =t 1s changing. Figure 6 shows this change. Values are scaled with

respect to the amplitude at m =1. At m = 1, 3, and 5 maximum residual
vibration amplitudes were making peaks. Between 1.5<m<2.5
maximum vibration amplitude values were less than 3% of the amplitude
for m = 1. Between 3.5 < m < 4.5 residual vibration amplitudes were less
than 0.1% of the maximum vibration amplitude for m = 1. These values
are independent of the beam natural frequency, that is why these results
will not change for different beams.
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Fig. 2. Rotating beam vibration for t.= 2.2T.
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Fig. 3. Rotating beam vibration for t,=3T.
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Fig. 4. Rotational motion of the beam during rise time, t, = 2.2T. 9
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Fig. 5. Rotational motion of the beam during rise time, t,=3T.
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Fig. 6. Residual vibration maximum amplitude spectrum.

3. Conclusion

In this study rotating flexible beam equations are derived. Assuming
triangular velocity profile for the rotation, analytical and numerical
solutions are obtained. Rotational acceleration of the beam, which is a
square wave, is approximated by three term Fourier series expansion.
Residual vibration maximum amplitude spectrum shows that for the ratio
of rise time to beam first natural period values of 1, 3, 5, ... maximum
residual vibration amplitudes are maximized, for ratio values of 1.5 to
2.5, maximum residual vibration amplitudes are less than 3% of the value
obtained for ratio = 1. For ratio values of 3.5 to 4.5 maximum residual
vibration amplitudes are less than 0.1% of the value obtained for ratio =
1. This study shows that it is possible to minimize the residual vibration
of the rotating flexible beam by selecting proper rise time.
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