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Abstract. Let (5, F, i) be a finite measure space and let X be a Banach
space. As usual L (g, X) is the Banach space of all Bochner p—integrable
functions f : 8 — X, with Ly (i, X) = L;{u) if X = R. This work is
intended for the study of a class of linear bounded operators T': Ly {p, X) —
X, whose integral structure is much similar to that of bounded functionals on
Ly (1), We give two complete characterizations of this class. The first one,
which may be considered as a Riesz type theorem, is obtained via integrals hy
functions in Ly {#). Actually the identified class is isometricaily isomorphic
t0 Lo (). The second characterization is more specific. It pertains to an
operator valued measure, that will be attached to each operator of the class.
This operator valued measure will be absolutely continuous with respect to
and this property will be used to get another interesting characterization of
the class under consideration.
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1 Introduction

1.1. Let (S, F, ) be & finite measure space and let X be a Banach space. We
denote by L; (¢, X') the Banach space of all Bochner y—integrable functions
fo8 — X, with Ly (g, X) = L () if X = R. For all properties of the
Bochner infegral, we refer the reader to [2].

For f & Ly (14, X), we put:
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(1.2) Il = Jg 1 (s}l du(s)

Then it is well known thai:

1.3. Proposition: Formula (1.2) defines a norm on Ly (u, X), for which
Ly (p, X) is a Bonach space. Moreover the measurable simple functions s
S — X form a dense subspace of Ly (p, X). This means that for each f &
Ly {p, X} there is a sequence s, of simple functions such that || — sall, — 0.

The starting point that has motivated the present work is confained in the
following simple observation:
1.4. Theorem: Fix o function g in L. (n) ( the space of all p—essentially
bounded real functions on S } and consider the operator T, : Ly (p, X) — X
defined by

(1.5) fe Ly (u, X), T,(f) =[5 fo du:
Then Ty is linear bounded and satisfies | Tyl = lg]l
Proof: Since |[f(s)g(s)] < /(o) lgll.  n— ae we deduce from {1.5),
1T (O < lolle - s N1F(s)idu(s) = HgH At flly- So the operator T, is
bounded and ||7, [[ < jlgll.- To prove the reverse nequality, apply 7T, to a func;~

tion f € Ly (i, X) of the form f = @.2, where ¢ € L; (), such that lleelty =

and z fixed in X with {jz|| = 1. We get | fll, = l¢ll, =1 and T, (f) = [s g
wdp = (/5 ©og. d,u) x, by standard integration tools. So we deduce 17, (f)” =
| [gwg.dul < and then Sup {} [gpg.dul, v e Li (1), |lel, = =1} < T,

But the LHS of the preceding inequality is equal to llgll_ by ihe Riesz duahty
theorem for Ly (11). So we get [[gll,, < | T, and then [Tyl = ||g]. M

1.6. Remark: Another way to put the conclusion of theorem 1.4 is the
following:

Themap @ : g — T, from Ly (1) into £ (L {0, X'), X), the space of bounded
operators T Ly (p, X} — X, is a linear isometry.

We can wonder whether @ is onto. This is certainly true if X = R by the
Riesz duality theorem for L; (). But if dimension of X is greater than one,
the following example shows that not all operators in £ (L; (1, X), X) can be
written in the form (1.5} for some g in Ly, (1) .

1.7. Example: Let X = R? equipped with the norm: z = (2;,2), |zl =
b+ 2] I f = (fi,fa) © § — R2 is Bochner p—integrable with the
Borel o—field on R? then fi,fy : S — R are p—integrable and js Fdu =
( /; o o o ). Note oo it 1 (] =17 ()] + 12 (s)], s0 that /], =
Jsifil dp + Jolf2ldu. Now define the operator 7 : Ly (4, B?) — B2, by
Tf=Tf1,f2) = {Jg Frdp a [ f2du), where 0 < o < 1 is a fixed constant.
It is clear that 7' is linear and we have |Tf|| = Ub h dy +o | o deu[ < £l

so that 7" is bounded. If there were a g € L, (1) such Lhat T(f) = [q jg

de, we would have [o fiduy = [, fig.dp and o Jo fodpe = [ fa. g dy, for all
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pi—integrable functions fi, fo. Taking fi, f» both characteristic functions of
sets in F, this would imply g = 1, p—a.e and g = o, p—a.e. This is impossible
by the choice of «v. Consequently the operator 7 cannot be written in the form
(L.5).

The aim of this work is to characterize bounded operators T Ly {u, X) — X
that have integral form (1.5) with a function g € Ly {@). This amounts to
describe the range of the operator @. In section 2 we give the ingredients of
this characterization. These ingredients are similar to those given in [3] for
operators on the space of continuous functions. This allows a representation
of operators on the space L (g, X}, much simpler than those given for the
space Ly (i) {1}, or more recently [4],15], for the space L, (u, X) itself. In
section 3 we prove integral representation by operator valued measures, for
operators introduced in section 2. This leads to a rather precise description of
such operators.

2 The Characterization

In this section we want to identily those operators T' € £ (L; {1, X), X}, for
which there is g € L (i) such that 7" = T,. To this end we shall extend the
strategy used in [ to the present setting. Let X* be the topological dual of X.
For each z” € X consider the operator w,- : Ly (p, X) — Ly (1), given by:

(21) f € L (,LL, X), {fgm"f =z*of
where (2" o f) () = 2" (f (), t € §.

We collect some facts about .« for later use:

2.2. Proposition: (a) p.- is linear bounded and @, || = ||lz*]].
(B} @y is onto for each z* # 0.
(c} There exist y* € X* such that for each h € Ly () there is | € Ly {1, X
with
!!f“i - “h’“}, and ng‘f = h.

Proof: (a) [lew fll = [ole" o 11 du < ol f, 1F(s)ll due(s) = [l [ 1. So
e 18 bounded and lgp,-| < llz*{. To see the reverse inequality apply ¢,
to a function f € L;{u, X) of the form f(s) = g(e).2, with ¢ € L (1)
such that |jg, = 1 and = fixed in X with ||lz]] = 1. We get ||f]l, = 1 and
loa- FIl = [olz* o fldp = |&* (z)]. Thus |* (23] < |@g || for every o € X with
[ = 1. Consequently [ja™(| = Sup {[a” (2)] 1 € X, [[2], = 1} £ [fon
(b) Let 2" # 0 and choose = € X such that z* (z) = 1. Now if h € L; (u) put
J = h.z, then clearly we have ¢,. f = h..

(¢} Choose z € X with {|z|| = 1, then { Hahn-Banach theorem ) choose y* € X*
such that y*(z) = |lzf = 1, lly* = 1. f h € L; (1), the function f = h.z is in
Ly {1, X} and fits the conclusion. B
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The following class of operators will play an essential role for the character-
lzation we need:

2.3.  Definition: Let © be the class of linear bounded operators 7 &
L(Ly (p, X}, X)) satisfying the following condition:

(2.4) Tyt € XY fig € Ly (X))t f = ey = 2"Tf = y*Ty

It is easy to check that D is a closed subspace of £ (L (1, X), X). Note also
that every T, as defined by {1.5) is in D).
The important fact about D is:

2.5. Theorem: Let T be an operator in D, then there exists o unique bounded
tinear functional Vi Ly (u) — R such that:

(2.6) Vowp=zg"0cT

for every z* e X*.

Proof: Let h € Ly ()} and 2* € X, 2 5 0; by 2.2(b) thereisan f € L (11, X)
such that @,«f = h. then we put:

(2.7) V (k) = 2T f

I f = @y-g = h, then 2*T f = y*Tg, by condition (2.4) ; s0 V is well defined,
and it is easy to see that it is linear. We must show that V is bounded. We
may argue as [ollows: since y,- is bounded and onto, by the open mapping
principle there exists a constant K = K. > 0 such that for every h € Ly (u),
there is a solution f € Ly (u, X) of g f = h, with ||f|| < K. ||All. From {2.7)
we deduce that [|[V (R} < o IT 1S < izt || 7)) K )R], which proves that
V' is bounded.

It is noteworthy that the functional V' does not depend on the choice of z* but
depends only on T. For if V. and V. are defined as in (2.7), with 2%, ¢* #
0, then Vo- (R) = o*Tf if b = .. f and V. (h) = y'Ty if h = Py g7 but
condition (2.4} on T implies that Vi. (k) =V, (h}. Tt remains to prove (2.6).
For f € Li{p, X) and 2* € X*, we have h = ¢, f € L; (), and (2.7
gives V(R) = V (i, f) = 2*T'f. Since f and z* are arbitrary, (2.6) follows.
Uniqueness is clear from (2.6) since ¢, is onto. M

As a consequence of the preceding theorem let us note:

2.8. Theorem: There is an isometric isomorphism between the Banach space
© and the topological dual Li (i) of Ly (i), for each non trivial Banach space
X.

Proof: Define the operator W: D —Li (u) by: T €D, U (T) =V, where V
is the unique bounded functional on L; (i) attached to T by theorem 2.5. It
1s not. difficult to see that W is linear. We have to show that U is an Isometry,
that is, |V} = ||T']l if ¥ (T) = V. First we prove the estimation
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(2.9) IV = Sup {IV o gl % € X*, [l < 1)
We have [V o oo | < |V [iar | = [V I o], since o] = 271 by 2.2(a).

So we deduce ||V o g || < [[V], for all 2* € X*, with ||2*]| < 1. Hence
Sup{[[Vowell :a* e X7 [[a*] <1} < V. But V € L¥ (i), consequently for
each ¢ > O thereis A € Ly (p) such that {All, < Tand [[Vi—e < |V (R)] < |VI.
Now let y* € X* as in 2.2 (¢) and choose f € L, {u, X}, such that | |, = A,
and g, f = h. Then ||, < 1and |V o, (1] — [V ()] < V0 el 7],
Thus |V (M) < Vol < Sup{liVop,l:2"e X flz*|| £1}. From the
choice of h we get |} ~ ¢ < Sup{[[V oy, |- 2" € X* ||z*] <1} Letting
£ L 0, we obtain V]| < Sup{{[Vop,|l:2z"e Xzl <1}. So (2.9) is
proved. To finish the norm equality ||V = ||T||, we appeal to formula (2.6)
and conclude:

Wil = Sup{IVope| 2" e X* 2" <1}

= Sup {2 o Tl - 2* € X* fla*l] < 1} = || T

To achieve the proof it remains fo prove that ¥ is onto. If V € L* (), then by
the Riesz duality theorem, there is a unique g € Ly, (1) such that V (h) = [,
hg dp, for all A € Ly (). Consider the operator T, on Ly (i, X) given by
formula (1.5). We have T, € D and it is straightforward that V and T, are
linked by equation (2.6}, So from the definition of the operator ¥ we deduce
that ¥ (T,) = V.M

Since L} () is isometrically isomorphic to Ly, (), we deduce the following
corollary:

corollary: The class © is isometrically isomorphic to Lo, (u). In other words,
a bounded operator T @ Ly (1, X) — X is in D iff there is o unique g € Lo, (p)
such that T = T, and in this case T = {jgll_. .

Now we turn to another degcription of the class D, namely by a space of
measures. This will be achieved via integrals with respect to operator valued
measures.

3 Operator valued measures representing the class D

3.1. The integration process we shall deal with in this section is performed by
an operator valued additive set function G : 7 — L{X, E), where £(X, ) is
the space of finear bounded operators of the Banach space X into the Banach
space K. The integral will be defined for measurable functions f : § — X,
under the assumption that G is additive and with finite semivariarion. Let
us recall that semivariation means the set function G on F given by G(B) =

Sup

S G(A) .z if where B € F, and the supremum taken over all finite
i
partitions {4;} of B in F and all finite systems of vectors {z;} in X, with
fzll < 1 ¥i. The function G is said to be of finite semivariation if G{B) is
finite for all B € F. A simple measurable function s on § with valies in the
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Banach space X is a function of the form s{e) = 3" 1, () .z;, where {A;}

2

Is a finite partition of S in F, and {z;} is a finite system of vectors in X.
The symbol 14, means the characteristic function of the set 4;. A function
f 8 - X is said to be measurable if there is a sequence s, of measurable
simple functions converging uniformly to f on S. If we denote by 7 and M the
sets of simple functions and measurable functions, respectively then 7 and M
are subspaces of the Banach space of all bounded functions f : S — X, with
supremum norm. Moreover 7 is dense in M.

We define the integral of the simple function s{e) = Y1, (e} x; over the

%

set B € F, with respect to G by:

(3.2) Sss dG =3 G (AN B)

It is easy to check that the integral is well defined and satisfies:
(3.3) 1S5 sG] < 1] .G(B)

(s} = suprernum norm)

Let us observe that estimation (3.3} implies that the linear operator Ug : Z— F,
with Ug (s) = [, s dG is bounded. So we can extend it in a unique manner
to a bounded operator on the closure M of Z. This extension will be our
integration process on the space M of measurable functions. We shall denote it
also by Ug with Up = U if B = 5. Note that if f € M and if s, is a sequence
in T such that || = s,{} — 0 then the integral of f is given by:

{(3.4) Ug (f) = [, dG =lim, [, s, dG

By (3.3} the integral (3.4) does not depend on the sequence s,, chosen converg-
ing to the function f. This simple integration process will be sufficient for our
purpose. The ountstanding facts are summarized in the following:

3.5 Theorem: Let G be an additive L{X, E}-valued set function with finite

semavariation on F.Then:
(a) The integral | p [ dG s linear in [ € M and satisfies:

(3.6) G(BY = Sup{[[[sf Gl ilfl <1, fe M}
i other words the operator Ug © M — E given by Ug () = fB. [ ac is
bounded with norm |Ug|l = G(B), for each B € F. Conversely:

(b) Let U : M — E be a bounded operator. Then there is a unigue additive
set function G F — L{X | ), with finite semivariation such that:

(3.7) ViEM, YBeF, U(flg)=[,fdC
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(c) Let A E — Y be a bounded operator from E into the Banach space Y.
Let us define AG - F — LIX,Y) by (AGY(B)a=A{G(B)z), Be F,z € X.
Then AG is an additive L(X,Y )-valued set function with finite semivariation
and we have;

(38)  WjeM, [,fdAG = A(f,dq)

Proof: (a) To prove (3.6) start with f simple and use (3.2) and the definition
of G(B). For general f use {3.4).

(b) Define G : F — L{X,E) by G (B).w = U(lgx), for B F, and z € X.
Then @ is additive since U is linear and G is £{X, E)-valued because U is
bounded. Now (3.7) is easily checked by (3.2) and (3.4).

{c¢) To prove (3.8} start with f simple and use the definition of AG, then apply
(3.4), ( recall that the operator A is bounded). M

Actually, part (b) of this theorem is an integral representation of a bounded
operator U on the space M by means of an £{X, F)-valued set function G on
F.

The next step is to extend the preceding integration process from M to the
space Ly {1, X). The reader should observe that the space M is contained in
Ly {1, X}, because functions in M are bounded and p is a finite measure. The
extension of the integral (3.4) from M to Ly (p, X) will be achieved under the
additional assumption that |G (A)]] < k. (A) for some constant k& > 0 and

3.9 Theorem: Let (7 be an additive L{X, E)-valued set function with finite
semivarialion on F. Assume that:

(3.10) 1G(A)] < b (A)

for some constant k > 0 and all A € F. Then we hove:
(a) The inlegral (3.4) is a linear operator from M to E which is continuous
with the Ly (g, X') —topology on M and satisfies:

(3.11) VEe M, |fsfdG[ <k [, 1] du

(b) The integral [, [ dG, [ € M, admits a unique extension to Ly (u, X), stil
denoted by f¢ fdG, such that:

(3.12) Pf € Li(i, Xy, || fo FAG| <k [ £l du
(c) The operator [ — [ fdG is linear and bounded from Ly (p, X) to E.

Proof: (a) Let s (o) = Z 14, (®).2; be a simple measurable function with val-

ues in X. From (3.10) we deduce || [, s dG| = 12@ ]i ZHG’ |
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<O kp (A Ml = kD w (A =l =k f§ |Isll die. So (3.11) is true for every

g GLI. Now if f & M, ?let S, € I be such that 5, — f uniformly on S. As
i is finite we deduce that [ |f — sulldp — 0 and so [, [lsalldp — [, 1 f] dp.
But ff f 5 800G H i : fc fdGH by {3.4}. From the estimation above we know
that | [¢ s, dG|| < k fg||sa] dps, for all n. Letting n — oo the validity of
(3.11) follows. Hence the continuity of the operator f — f ¢ fdG with the
Ly {1, X) —topology on the space M. Next to prove (b), we shall construcs
an E—valued integration process on Ly {u, X} with the set function , that
coincides with the integral (3.4) on M. This will be the desired extension.
Recall that the integral [, s d@, for s simple, has been defined by formula (3.2).
Now if f € Ly (p, X), there exist a sequence s,, € T such that S llf = snll dp —
0. By (3.11) the sequence |, ¢ $nd(' s fundamental in the Banach space E, so
the limit lim, [ s,dG exists in £ and it is easy to check that this limit is
independent of the choice of the sequence s, converging to f in L; (11, X). So
we can define:

(3.13) feli(u X), [ofdG=lim, [, s,4G

where s, is any sequence in T converging to f in the L; (i, X) sense.

Now if f is a function in M, every sequence s, € 7 which converges uniformly
to f, converges also in the Ly (p, X) sense. So the integrals (3.4) and (3.13)
are the same for such f and this proves that (3.13) is an extension of (3.4).
'to see the inequality (3.12}, let s, € T converging in Ly (g, X} to the function
J € Li(p, X). By (3.11) we have || [, 5,dG|| < k [, l[s.] dps, for all n. Teking
limits for both sides we get (3.12) from which uniqueness of the extension
follows.Part {¢) is clear. M

As for the converse of 3.9(c), let us point out the following

3.10 Theorem: Lel T': Ly (i1, X') — E be a bounded operctor from Ly (i, X)
to B. Then there erists o unigue set function G @ F — L(X, E) with finite
semiveriation satisfying {3.10), with the constant k = [T and such that:

(3.14) JeLinX),  Tf= [ fdc
Moreover (7 is o—additive in the uniform topology of £(X, Ej.
Proof: Define G on F by the formula:
(3.15) AcF reX GA)a=T(1s(e).2)
It is clear that (/' (A) is linear on X for each 4 € F and we have |G {A4) z| =
1T (14 (o). )] < 7Y .u(A). lzll. So we deduce that the function G sends

J to L{X, E) and satisfies |G {A)| < IT].1u(A), hence the validity of (3.10)
with & = |T]l. On the other hand (3.14) is easily checked from (3.15) for
simple functions by linearity, and then extended to arbitrary f € L; (i, X),
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by the apropriate limiting process. Finally to get the o—additivity of G, let
Ay, be a sequence in F with A, N\, ¢, then p (4,) — 0 and since ||G (4,)] <
17 s (An) for all n, we obtain G (4,) — 0 in the uniform topology of £{ X, £),
whenee the o —additivity of G.1

Now we consider operators T in the class ©. We prove that the operator
valued function G attached to an operator T € D, according to (3.15), allows
an interesting characterization of such operators.

3.16 Theorem: Let T : Ly (4, X) — X be a bounded operator on Ly (u, X)
into X. Then T ts in the class @ if and only if the operator valued function
attached to it according to (3.15) is of the form:

(3.17) AeF,zeX  G{A) . (e) =A(A).I(s)

where A is a bounded measure absolutely continuous with respect to u, and T
15 wdentily operator of X.

Proof: If T is in the class ©, then by the corollary of theorem (2.8) there is
B unique g € Lo, (j1) such that T = T,, that is for all f e L, (4, X), Tf = Is
Jg di. On the other hand we have from (3.14), Tf = [, fdG with G given

by (3.15). So taking f = 14(e).z, for A € F, x € X, in the two precading
expressions of T'f, we get G (A) .z = (‘[A gz du) = (ng dp) .x. Hence the
validity of (3.17) with A(A) = [, g du. Since p is linite, the function g is in
Ly {12) and then it is clear that X is a bounded measure absolutely continuous
with respect to . Now suppose that the operator valued function attached
to T according to (3.15) is of the form: G (A) .z = A (4) .z, with ) a bounded
measure absolutely continuous with respect to ji. So we can write A (A) = fa9
di, A € F, for some unique g € Ly (u). Actually the function g belongs
to Lo (p¢). Indeed by (3.15), G(A).x = T{i4(e).z) and we deduce that
IG (4) ]| = | ([, 0du)| - fall < 1T () ], which implies |(J, ga)| <
[T p(A), for all A € F. Consequently |[gli, < [T, that is ¢ € L. ().
Now let us write the formula G (A) w = A (A) w as [ 142 dG = [ g.l42 dp,
and extend it by linearity to [o s dG = fog.s du, for s simple in Ly (p, X).
It f € Ly {pp, X), let s, be a sequence of simple functions converging to f in
Ly (4, X). Then g.s, converges to g.f in Ly (g, X), since g € Ly (), so we
deduce that [ g.s, du goes to [ g.f du. But fo 80 dG = [, g.s, dp, for all n
and by (3.13), [, fdG = lim, [ s.dG, consequently Jeo.f dp= [, fdG, for
all f & Ly {, X). But from (3.14) we have, Tf = [, fdG for [ € Ly (1, X)
thus Tf = [cg.f dp="T,f thatis T € DM

i

REFERENCES

[1} J.Diestel, Uhl, J.J (1977): Vector Measures, Math. Surveys Number
15 AMS.



446 L. Meziani, S. Almezel and M. N. Waly

2] E.Hille, R.S8.Phillips (1857): Functional Analysis and Semigroups, AMS
Colloguium.

(31 L.Meziani (2002): Integral Representation for o class of Vector Valued
Operators, Proc. Amer.Math.Soc. Vol 130, Number 7 2067-2077.

[4] Laurent Vanderputten (2001): Representation of Operators Defined on
the Space of Bochner Iniegrable Functions, Extracta Mathematicae Vol. 16,
Num. 3, 383-391 (2001).

5] M. Gonzalez, A. Martinez-Abejon, J. Pello-Garcia (2004): Rep-
resentation of Operators with Marlingales and the Radon-Nikodym Property,
Extracta Mathematicae Vol. 19, Num. 1, 135-140 (2004).

Received: November 24, 2007



