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Abstract

In this paper, we introduce the concept of a left bicrossproduct Hopf
algebra associated to a factorization of a finite group X into a subgroup
G and a subsemigroup M. Moreover, we show that for a left Hopf algebra
H = kM �� k(G) associated to a factorization X = GM of a group
X into a subgroup G and a subsemigroup M with identity and left
inverse property, there is a left Hopf algebra isomorphism H → H∗

which sends basis elements to basis elements can be constructed from a
factor-reversing isomorphism of X = GM and vise versa.
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1 Introduction

Bicrossproducts which are associated to a factorization of groups are essen-
tial in the field of non-commutative and non-cocommutative Hopf algebras.
Bicrossproduct Hopf algebras have many applications in quantum mechanics
and geometry and the interrelation between them (see [8]). These algebras
and their dual were extensively studied in [1], [2], [4], [5] and [8].

In [4], Beggs, Gould and Majid showed that basis-preserving self-duality
structures for the bicrossproduct Hopf algebras are in one-to-one correspon-
dence with factor-reversing group isomorphisms.

In [6], Green, Nichols and Taft defined a left Hopf algebra to be a k-
bialgebra (B,m,Δ, μ, ε : k) with a left antipode S, i.e., S ∈ Homk(B,B) and
S ∗ id = με.

In This paper, we generalize some results of [4] using this definition of
left Hopf algebra in specific case. More specifically, we show that for a left
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Hopf algebra H = kM �� k(G) associated to the factorization X = GM
of a group X into a subgroup G and a subsemigroup M with identity and
left inverse property, where k(G) is the Hopf algebra of function on G and
kM is the semigroup left Hopf algebra of M , there is a left Hopf algebra
isomorphism H → H∗ which sends basis elements to basis elements can be
constructed from a factor-reversing isomorphism of X = GM . Conversely,
we show that for a factorization X = GM of a group X into a subgroup G
and a subsemigroup M whit identity and a left inverse property, a factor-
reversing semigroup isomorphism of X = GM can be obtained from a left
Hopf algebra self-duality pairings <,>: H ⊗ H → k on the left Hopf algebra
H = kM �� k(G).

2 Self-duality of bicrossproducts

Here we introduce the concept of bicrossproduct left Hopf algebras associated
to factorization of a group into a subgroup and a subsemigroup with identity
and a left inverse property. The left inverse for an element m ∈ M will be
denoted by mL, if it exists. We need the following definitions:

Definition 2.1 let X = GM be a factorization of a group into a subgroup G
and a subsemigroup with identity and a left inverse property M . A bialgebra
H = kM �� k(G) with basis m ⊗ δg where m in a subsemigroup M and g in
a subgroup G is called a left Hopf algebra if there is a one-sided antipode map
S such that

S(m⊗ δg) = (m� g)L ⊗ δ(m�g)−1 .

Definition 2.2 Let X = GM be a group factorization. We define a semigroup
isomorphism θ : X → X to be factor-reversing if θ(G) ⊂M and θ(M) ⊂ G.

Now, let X = GM be a group which factorizes into a subgroup G and a
subsemigroup with identity M . Then M acts on G through the right action
�: M × G → G and G acts on M through the left action �: M × G → M .
These actions are defined by the unique factorization

mg = (m � g)(m � g), (1)

where m ∈ M and g ∈ G. According to [4], it is easy to show that these
actions obeying the following conditions for all m,m1 ∈M and g, g1 ∈ G :

m � e = m, (m � g) � g1 = m � (gg1); e � g = e, (2)

(mm1) � g = (m � (m1 � g))(m1 � g), (3)
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e � g = g,m � (m1 � g) = (mm1) � g;m � e = e, (4)

m � (gg1) = (m � g)((m � g) � g1). (5)

It can be seen that we can associate to this factorization a bicrossproduct
bialgebra H = kM �� k(G) with basis m⊗ δg where m ∈M and g ∈ G. The
product, unit, coproduct and counit are defined as follows:

(m⊗ δg)(m1 ⊗ δg1) = δg,m1�g1(mm1 ⊗ δg1), (6)

1H =
∑

g

e⊗ δg , (7)

Δ(m⊗ δg) =
∑

x,y∈G:xy=g

m⊗ δx ⊗ (m� x) ⊗ δy , (8)

εH(m⊗ δg) = δg,e . (9)

If M posses a left inverse mL for each m ∈M, then H becomes a left Hopf
algebra and the antipode will be given by:

S(m⊗ δg) = (m� g)L ⊗ δ(m�g)−1 . (10)

Due to these formulas, it can be noted that H = kM �� k(G) has the
smash product algebra structure by the induced action of M and the smash
coproduct coalgebra structure by the induced coaction of G.

In the symbol H = kM �� k(G), kM is the semigroup left Hopf algebra
of the semigroup with identity and the left inverse property M . A basis of
kM is given by the elements of M, with multiplication given by the semigroup
product in M , and comultiplication given by Δm = m⊗m for m ∈ M. Also,
k(G) is the Hopf algebra of functions on G with basis given by δg for g ∈ G.
The product is just multiplication of functions, and the coproduct is

Δδg =
∑

x,y∈G:xy=g

δx ⊗ δy.
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In addition, a dual bicrossproduct bialgebra H∗ = k(M) �� kG can be
defined with basis δm ⊗ g where m ∈ M and g ∈ G. The product, unit,
coproduct and counit are defined as follows:

(δm ⊗ g)(δm1 ⊗ g1) = δm�g,m1(δm ⊗ gg1), (11)

1H∗ =
∑
m

δm ⊗ e , (12)

Δ(δm ⊗ g) =
∑

a,b∈M :ab=m

δa ⊗ (b� g) ⊗ δb ⊗ g , (13)

εH∗(δm ⊗ g) = δm,e . (14)

If M posses a left inverse mL for each m ∈M, then H∗ becomes a left Hopf
algebra and the antipode will be given by:

S(δm ⊗ g) = δ(m�g)L ⊗ (m� g)−1 . (15)

Proposition 2.3 For a left Hopf algebra H = kM �� k(G) associated to a
factorization X = GM of a group X into a subgroup G and a subsemigroup
M with identity and left inverse property, where k(G) is the Hopf algebra of
function on G and kM is the semigroup left Hopf algebra of M , there is a
left Hopf algebra isomorphism H → H∗, which sends basis elements to basis
elements, can be constructed from a factor-reversing isomorphism of X = GM .

Proof. We define a linear map θ̃ : H → H∗ by

θ̃(m⊗ δg) = δθ(m�g) ⊗ θ(m� g) (16)

and verify that this is a left Hopf algebra isomorphism θ̃ : kM �� k(G) →
k(M) �� kG whenever θ is a semigroup isomorphism. Suppose that θ is a
semigroup isomorphism. Then

θ(m1g1) = θ((m1 � g1)(m1 � g1))

= θ(m1 � g1)θ(m1 � g1),

and

θ(m1g1) = θ(m1)θ(g1).



Left Hopf algebras and self duality 2381

The condition that these two expressions are the same is that, for all m1 and
g1,

θ(m1)θ(g1) = θ(m1 � g1)θ(m1 � g1)

= (θ(m1 � g1) � θ(m1 � g1))(θ(m1 � g1) � θ(m1 � g1)).

So, by the uniqueness of factorization, we get

θ(m1) = θ(m1 � g1) � θ(m1 � g1), (17)

and

θ(g1) = θ(m1 � g1) � θ(m1 � g1). (18)

Now, to prove that θ̃ is a left Hopf algebra isomorphism, we check the condi-
tions for θ̃ to be an algebra isomorphism, i.e.,

θ̃((m⊗ δg)(m1 ⊗ δg1)) = θ̃(m⊗ δg)θ̃(m1 ⊗ δg1),

which we do as follows:

θ̃((m⊗ δg)(m1 ⊗ δg1)) = θ̃(δg,m1�g1(mm1 ⊗ δg1))

= δg,m1�g1δθ(mm1�g1) ⊗ θ(mm1 � g1).

On the other hand,

θ̃(m⊗ δg)θ̃(m1 ⊗ δg1) = (δθ(m�g) ⊗ θ(m� g))(δθ(m1�g1) ⊗ θ(m1 � g1))

= δθ(m�g)�θ(m�g),θ(m1�g1)(δθ(m�g) ⊗ θ(m� g)θ(m1 � g1))

= δθ(g),θ(m1�g1)δθ(m�g) ⊗ θ((m� g)(m1 � g1)) (applying θ−1)

= δg,m1�g1δm�g ⊗ θ((m� g)(m1 � g1)) (putting g = m1 � g1)

= δg,m1�g1δθ(m�(m1�g1)) ⊗ θ((m� (m1 � g1))(m1 � g1))

= δg,m1�g1δθ(mm1�g1) ⊗ θ(mm1 � g1).

Next, we check the condition for θ̃ to be a coalgebra isomorphism, i.e.,

Δθ̃(m⊗ δg) = (θ̃ ⊗ θ̃)Δ(m⊗ δg). (19)

We start with

Δθ̃(m⊗ δg) = Δ(δθ(m�g) ⊗ θ(m� g))

=
∑

a,b∈M :ab=θ(m�g)

δa ⊗ (b� θ(m� g)) ⊗ δb ⊗ θ(m� g).
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On the other hand,

(θ̃ ⊗ θ̃)Δ(m⊗ δg) = (θ̃ ⊗ θ̃)
∑

x,y∈G:xy=g

(
m⊗ δx

) ⊗ (
(m� x) ⊗ δy

)
=

∑
x,y∈G:xy=g

θ̃(m⊗ δx) ⊗ θ̃((m� x) ⊗ δy)

=
∑

x,y∈G:xy=g

δθ(m�x) ⊗ θ(m� x) ⊗ δθ((m�x)�y) ⊗ θ((m� x) � y)

=
∑

x,y∈G:xy=g

δθ(m�x) ⊗ θ(m� x) ⊗ δθ((m�x)�y) ⊗ θ(m� xy).

If we put a = θ(m� x) and b = θ((m� x) � y), then

ab = θ(m� x)θ((m� x) � y)

= θ((m� x)((m� x) � y))

= θ(m� (xy)) = θ(m� g).

By comparing the left hand side of equation (19) with the right hand side, we
should have

b� θ(m� g) = θ((m� x) � y) � θ(m� g)

= θ((m� x)−1(m� (xy))) � θ(m� g)

= θ((m� x)−1(m� g)) � θ(m� g)

= θ(m� x)−1 � (θ(m� g) � θ(m� g))

= θ(m� x)−1 � θ(m)

= θ(m� x)−1 � (θ(m� x) � θ(m� x))

= θ((m� x)−1(m� x))θ(m� x)

= θ(e)θ(m� x)

= θ(m� x).

This shows that equation (19) is satisfied.

We need now to check the effect of θ̃ on the unit and counit. We start with
the counit to prove that :

εH∗ θ̃(m⊗ δg) = εH(m⊗ δg).

So

εH∗ θ̃(m⊗ δg) = εH∗(δθ(m�g) ⊗ θ(m� g))

= δθ(m�g),e.
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To have a non-zero answer we should have θ(m � g) = e, or θ(m � g) = θ(e)
which implies that m � g = e since θ is invertible. Applying mL� to both
sides gives

mL �m� g = mL � e

⇒ mLm� g = e

⇒ e� g = e

⇒ g = e,

hence

εH∗ θ̃(m⊗ δg) = εH∗(δθ(m�g) ⊗ θ(m� g))

= δθ(m�g),e

= δg,e = εH(m⊗ δg).

For the unit, we need to prove that θ̃(1H) = 1H∗ , which we do as follows:

θ̃(1H) = θ̃(
∑

g

e⊗ δg)

=
∑

θ(e�g)

δθ(e�g) ⊗ θ(e� g)

=
∑
θ(g)

δθ(g) ⊗ θ(e)

=
∑
θ(g)

δθ(g) ⊗ e = 1H∗ .

To check that the antipode is preserved, we need the following calculations:

(mg)L = gLmL = g−1mL = ((m� g)(m� g))L

= (m� g)L(m� g)L = (m� g)L(m� g)−1

= ((m� g)L � (m� g)−1)((m� g)L � (m� g)−1).

By the uniqueness of factorization, we should have

gL = g−1 = ((m� g)L � (m� g)−1), (20)

and

mL = ((m� g)L � (m� g)−1). (21)

Due to the fact that θ is a semigroup isomorphism, we have

θ(gL) = θ(g−1) = (θ(g))L = θ((m� g)L � (m� g)−1), (22)
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θ(mL) = (θ(m))L = (θ(m))−1 = θ((m� g)L � (m� g)−1). (23)

Moreover, it is needed to prove that the antipode S satisfying

θ̃S(m⊗ δg) = Sθ̃(m⊗ δg), (24)

which we do as follows:

θ̃S(m⊗ δg) = θ̃(S(m⊗ δg))

= θ̃((m� g)L ⊗ δ(m�g)−1)

= δθ((m�g)L�(m�g)−1) ⊗ θ((m� g)L � (m� g)−1)

= δ(θ(g))L ⊗ (θ(m))−1.

On the other hand,

Sθ̃(m⊗ δg) = S(θ̃(m⊗ δg))

= S(δθ(m�g) ⊗ θ(m� g))

= δ(θ(m�g)�θ(m�g))L ⊗ (θ(m� g) � θ(m� g))−1

= δ(θ(g))L ⊗ (θ(m))−1,

as required.
Finally, to see that θ̃ : H∗ → H is invertible, we define θ̃−1 : H∗ → H by

θ̃−1(δm ⊗ g) = θ−1(m� g) ⊗ δθ−1(m�g), (25)

and we want to prove that :

θ̃θ̃−1(δm ⊗ g) = id(δm ⊗ g),

and
θ̃−1θ̃(m⊗ δg) = id(m⊗ δg),

where id is the identity map.

θ̃θ̃−1(δm ⊗ g) = θ̃
(
θ̃−1(δm ⊗ g)

)
= θ̃

(
θ−1(m� g) ⊗ δθ−1(m�g)

)
= δθ(θ−1(m�g)�θ−1(m�g)) ⊗ θ(θ−1(m� g) � θ−1(m� g))

= δθ(θ−1(m)) ⊗ θθ−1(g)

= δm ⊗ g.

Also,

θ̃−1θ̃(m⊗ δg) = θ̃−1(θ̃(m⊗ δg))

= θ̃−1(δθ(m�g) ⊗ θ(m� g))

= θ−1(θ(m� g) � θ(m� g)) ⊗ δθ−1(θ(m�g)�θ(m�g))

= θ−1(θ(m)) ⊗ δθ−1(θ(g))

= m⊗ δg,

as required. Therefore, θ̃ is a left Hopf algebra isomorphism. �
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Proposition 2.4 Let H = kM �� k(G) be a left Hopf algebra associated to
a factorization of a group X = GM into a subgroup G and a subsemigroup
M whit identity and a left inverse property where k(G) is the Hopf algebra
of function on the subgroup G and kM is the semigroup left Hopf algebra of
the semigroup M . Then the we can induce the factor-reversing semigroup
isomorphism of X = GM from a left Hopf algebra self-duality pairings <,>:
H ⊗ H → k on the left Hopf algebra H. The formula for the corresponding
pairing is

< m⊗ δg, m1 ⊗ δg1 >= δm,θ(m1�g)δg,θ(m1�g1). (26)

Proof. Assume that θ̃ : H → H∗ which is defined by

θ̃(m⊗ δg) = δθ(m�g) ⊗ θ(m� g),

is a left Hopf algebra isomorphism which sends basis elements of H to basis
elements ofH∗. We want to prove that we can induce a semigroup isomorphism
θ from θ̃. We start with functions m : M ×G→M and g : M ×G→ G such
that

θ̃−1(δm ⊗ g) = m(m, g) ⊗ δ�(m,g). (27)

The condition that θ̃−1 preserves the unit gives

θ̃−1(1H∗) = θ̃−1(
∑
m

δm ⊗ e) =
∑
�(m,e)

m(m, e) ⊗ δ�(m,e).

But
θ̃−1(1H∗) = θ̃−1(

∑
m

δm ⊗ e) =
∑

g

e⊗ δg = 1H ,

since θ̃−1 is an algebra isomorphism. From these we see that

m(m, e) = e. (28)

Also, the preservation of the counit gives

εH θ̃
−1(δs ⊗ u) = εH(m(m, g) ⊗ δ�(m,g)) = δ�(m,g),e.

But
εH θ̃

−1(δm ⊗ g) = εH∗(δm ⊗ g) = δm,e,

since θ̃−1 is a coalgebra isomorphism. Putting m = e, we find

g(e, g) = e. (29)
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Next, we use the fact that θ̃−1 is an algebra homomorphism in the equation

θ̃−1((δm ⊗ g)(δm1 ⊗ g1)) = θ̃−1(δm ⊗ g)θ̃−1(δm1 ⊗ g1), (30)

to obtain the following equivalent equations:

θ̃−1(δm�g,m1(δm ⊗ gg1)) = (m(m, g) ⊗ δ�(m,g))(m(m1, g1) ⊗ δ�(m1,g1)),

δm�g,m1 θ̃
−1(δm ⊗ gg1) = δ�(m,g),�(m1,g1)��(m1,g1)(m(m, g)m(m1, g1) ⊗ δ�(m1,g1)),

or

δm�g,m1(m(m, gg1) ⊗ δ�(m,gg1)) = δ�(m,g),�(m1,g1)��(m1,g1)(m(m, g)m(m1, g1) ⊗ δ�(m1,g1)).

To have a non-zero answer we should have :

m1 = m� g, (31)

and

g(m, g) = m(m1, g1) � g(m1, g1). (32)

Thus, for all m,m1 ∈ M and g, g1 ∈ G, we deduce

m(m, gg1) = m(m, g)m(m1, g1), (33)

g(m, gg1) = g(m1, g1). (34)

Note that if we put m = e in (33) and substitute m1 = m� g, we get

m(e, gg1) = m(e, g)m(e, g1). (35)

Now, the equations for preservation of the coproduct yield

Δθ̃−1(δm ⊗ g) = Δ(m(m, g) ⊗ δ�(m,g))

=
∑

x,y∈G,xy=�(m,g)

m(m, g) ⊗ δx ⊗ (m(m, g) � x) ⊗ δy,

and

Δθ̃−1(δm ⊗ g) = (θ̃−1 ⊗ θ̃−1)Δ(δm ⊗ g) (since θ̃−1 is a colagebra isomorphism)

= (θ̃−1 ⊗ θ̃−1)

( ∑
a,b∈M :ab=m

(
δa ⊗ (b� g)

) ⊗ (
δb ⊗ g

))

=
∑

a,b∈M :ab=m

θ̃−1
(
δa ⊗ (b� g)

) ⊗ θ̃−1
(
δb ⊗ g

)
=

∑
a,b∈M :ab=m

m(a, b� g) ⊗ δ�(a,b�g) ⊗ m(b, g) ⊗ δ�(b,g).
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Thus
g(m, g) = g(a, b� g)g(b, g) = g(ab, g).

Putting g = e gives

g(m, g) = g(a, b� e)g(b, e) = g(a, e)g(b, e) = g(ab, e). (36)

From the coproduct formula we also see that m(m, g) � x = m(b, g) where
x = g(a, b� g) and ab = m. Putting b = e here gives

m(m, g) � g(a, g) = m(e, g).

From (36), we have g(m, g) = g(ab, g). Putting b = e gives g(m, g) = g(a, g).
Hence

m(m, g) � g(m, g) = m(e, g). (37)

From (32), with m = m1 � g−1 and g = e, we get:

m(m1, g1) � g(m1, g1) = g(m, g)

= g(m1 � g−1, g)

= g(m1 � g−1, e)

= g(m1 � e, e) (as g = e, then g−1 = e, g ∈ G)

= g(m1, e).

Consequently,

m(m1, g1) � g(m1, g1) = g(m1, e). (38)

If we put (37) and (38) together, then

m(m, g)g(m, g) = (m(m, g) � g(m, g))(m(m, g) � g(m, g)) = g(m, e)m(e, g).
(39)

From (34) with g1 = e, we have

g(m, g) = g(m1, e).

Also, from (31), we have m1 = m� g which implies that

g(m, g) = g(m� g, e).

From the coproduct formula we get m(a, b � g) = m(m, g) and m = ab which
implies that

m(a, b� g) = m(ab, g).
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Putting a = e gives

m(e, b� g) = m(b, g).

Substiuting these equations into (39) gives

m(e,m� g)g(m� g, e) = g(m, e)m(e, g). (40)

Therefore, equations (28), (29), (35), (36), and (40) are all the conditions needed
to prove that the map ψ : X → X defined by

ψ(mg) = g(m, e)m(e, g)

= ψ(m)ψ(g).

is a semigroup homomorphism. Since G
⋂
M = e, the map ψ is well defined.

If we set θ = ψ−1 we see that our original left Hopf algebra map θ̃ is indeed
that induced by θ. �
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