
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

341

Manuscript received April 5, 2008

Manuscript revised April 20, 2008

The Use of Object-Oriented Approach for Arabic Documents
Recognition

Ibrahim A. Albidewi
Computer Science Department, College of Computing and Information Technology

King AbdulAziz University
P.O.Box 9028, Jeddah 21413, Saudi Arabia

Summary
This paper presents a system for Arabic character recognition
which is implemented using Object Oriented Programming
(OOP). The system starts by scanning the document which will
be processed to resolve the skewing problem, and then the
document will be segmented into lines where each is segmented
into words. Each word is segmented into characters or primitives
also some characters will be fragmented during this process. The
features of the fragments characters will be obtained and a neural
network module will be used for the recognition. A finite state
automata recognizer is used for recognizing the fragments of
each character.
Key words:
Arabic Character Recognition, OCR, Objected-Oriented
Programming, Neural Network, Document Segmentation, and
Image Processing

1. Introduction

One of the common methods for converting written
texts to electronic text is optical character recognition
(OCR). A lot of work has been done on English OCR, but
Arabic OCR is still under development [1] [2]. In almost
every image processing application, preprocessing stage is
required ranging from biometric analysis to document
image analysis. An input image need to be normalized and
converted into format acceptable by OCR system. OCR
systems typically assume that documents were printed
with a single direction of the text and that the acquisition
process did not introduce a relevant skew [3] [4].

OOP principles and design patterns are introduced in

many applications as the means to cope with design
complexity [5] [6]. Many articles introduce a software
development framework, which amasses object-oriented
programming (OOP) concepts and designed procedures,
intended to systematize the implementation of link-level
tools. This development framework is fully implemented
in C++ programming language providing modularity and
reusability (improving the coding activity). This
framework then constitutes remarkable tool for quickly
creating link-level applications [7].

The ultimate goal for character recognition in general
is to develop a communication interface between the
computer and its users. This implies the direct storing of
handwriting of the users into computer memory without
going through a keyboard and enable the users of
computer systems to store Arabic documents directly to
memory as text file. These text files can be accessed and
edited later for more processing if desired. The scope of
Arabic Character Recognition varies from the simplest
form of isolated printed characters to the most complex
one of the hand-written documents. Nowadays,
researchers strive toward achieving more speed for
recognition with higher accuracy [8]. This becomes
available by means of sophisticated and much more
powerful PC's. Although Arabic alphabet contains only 28
characters, yet the process of recognition deals with more
than 60 characters. This is because Arabic characters take
different shapes depending on their location within the
word.

Table (1) [9] indicates the different shapes of each

character when it is located at the start, middle, or end of
the word. The character also has a different shape if it is
isolated. Also, some characters are classified into some
groups having the same main stroke with minor change.
This change is indicated by having different number of
dots as well as their location with respect to the main
stroke.

Arabic handwritten characters are written cursively.

Therefore, segmentation of Arabic handwritten words is
associated with some problems. These are presented in
overlapping of sub words, different sizes of written
characters, and the existence of connecting strokes with
different length between the written characters.

In this paper, the block diagram of the system consists of
four parts as shown in Figure 1. The first part is called the
page analyzer. The seconded one deals with functions that
extract the features. The third deals with four neural
networks to recognize the characters or fragments while
the last deals with a finite state automata (FSA) recognizer.
Moreover, figure 1 gives the block diagram of the system

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

342

while figure (2) shows the relationships among those
modules.

2. Page Analysis Module

This module receives the scanned document pages which
is accomplished by means of a TWAIN package used for
the scanner. Therefore, the scanner can be operated from
within the Module to produce the bitmaps of pages of a
document.

The module performs the segmentation process of each
Page into Lines, Words and Characters. It also builds
objects of the class CPageInfo that encapsulate the
segmentation data and functions that accomplish the
segmentation. These objects are exported in a persistent
form for further processing by the FSA Recognizer
Module.

In this work, a Page is defined to be a block of text lines
using the same font. A Word is a sequence of connected
Characters within the same Line. The segmentation
process of a Word into Characters may cause the
fragmentation of some standard characters into several
fragments of a character. Therefore, the set of all possible
standard characters as well as all possible fragments define
our Character set.

2.1 Representation of Segmentation

The segmentation hierarchy is represented by maintaining
a linked list of CLineInfo objects within CPagelnfo.
CLinelnfo in turn maintains a linked list of CWordlnfo
objects. The CLineInfo objects keep the data for allocating
the bounding rectangle of each Line within the Page
bitmap as well the position of the base line zone for the
line of text. The CWordlnfo objects keep similar data for
the Words within the Line as well as the x-positions at
which each word is segmented into Characters. The
CWordlnfo objects also store the individual Character
codes (ISO codes / UNICODE values) which will be filled
by the Recognizer Module.
Object Persistence is implemented by defining the member
function Serialize for each of the CPageInfo, CLineInfo
and CWordlnfo classes the linked list objects are taken
from the MFC (Microsoft Foundation Classes) Collection
class CObList that has a predefined Serialize member
function. This design benefits from MFC code reusability
and allows for exporting the objects in a persistent form
for further processing by the FSA Recognizer Module.

2.2 Segmentation Process

This process mainly consists of three types of operations.
The first operation deals with a page to line segmentation.
The second one separates a line into its words and the
third one segments a words into characters or parts of a
character.

The Page to Lines segmentation process is implemented
by an object of the class CPage Lines Analyser. This class
encapsulates a pointer to the CPagelnfo object and the
working data used by the member functions that perform
the segmentation. The segmentation process uses
horizontal projection of the bitmap pixels to form an X-
Histogram. The histogram zones define the Lines zones.
Moreover, the maxima within the histogram zones define
the Base Line of each line within the text.

The Line to Words segmentation process is implemented
by an object of the class CLineWordsAnalyser. Therefore,
this class encapsulates a pointer to the CLineInfo object
and the working data used by the member functions that
perform the segmentation. The segmentation process uses
the vertical projection of the bitmap pixels to form a Y-
Histogram. The histogram zones define the Words zones.

The Word to Characters segmentation process is
implemented by an object of the class
CWordCharsAnalyser. This class encapsulates a pointer to
the CWordInfo object and the working data used by the
member functions that perform the segmentation. The
segmentation process uses a vertical projection of the
bitmap pixels while masking the base line zone to form
Masked-Base-Line (Y–Histogram). The histogram zones
define the individual Characters or the Character
fragments.

2.3 Page Deskewing

The Masked-Base-Line Word to Characters segmentation
process is sensitive to the correct determination of the base
line zone. A very useful feature of Arabic printed text is
the presence of pronounced peeks of the X-Histogram at
the locations of the base line. However, a correction must
be done for any skew in the Page bitmap. The deskewing
operation should be implemented in order to rely on this
feature for correct Word to Characters segmentation.

The Page Analysis Module uses an object of the class
CPageDeskewer to rotate the bitmap after estimating the
required angle of the rotation. The member function
GetLinelnclillationO determines the average inclination of
the Page base lines. The average inclination is determined
by using a modified version of the Hough transform,
where the points are transformed in the 'xy-plane to lines

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

343

in the mc-plane (i.e. the point (Xi, Yi) lies on a line (M Xi
+ C = Yi) which represents a line Plane.

The member function GetWordBaseLinesO is used to
build the X-Histogram and determine the base line of each
Word. This is followed by transforming the midpoints of
each Word's base line into a line in the mc-plane.
GetLinelnclination() then uses the least squares method to
determine the best m value that fits the given data. This m
value is the average of the actual base lines inclinations to
be corrected for. The above produces the angle of the
rotation to be used by the member function
DeskewBitmap() and the last function performs the actual
rotation in a pixel-wise fashion to bring the base lines to
the determined horizontal positions.

3. Features Extractor Module

As mentioned before, each character of the characters set
is represented by a bitmap file. Moreover, this set is
prepared in a common disk directory, such that for each
Character the following data is also maintained:

Character Identifier,
Code (ISOIUNICODE value),
Bitmap file name,
Character Context.

The following shows some sample Character
Specifications,

 ,Height = 41, Width = 16 (Tah) ط

Code = 216,
Context = BMSE

 ,Height = 48, Width = 16 (Ain_E) ـع
Code = 218,
Context = E

 ,Height = 42, Width = 10 (Ghain_M) ـغـ
Code = 219,
Context = M

where character context is used to specify the possible
location of the Character with respect to the Word where it
belongs to. This can be as follows:

a) Beginning of the Word denoted by B,

b) End of the Word denoted by E,

c) Middle of the Word denoted by M,

d) Separate position of the Word denoted by S.

The Features Extractor Module stores this data for each
Character in the character set in CCharInfo objects. Those
objects are stored in a linked list within a CFontInfo
object. The Module will then build a CCharAttributes
object that encapsulates the features it extracts for each
Character. Again, the CCharAttributes objects for the
Character set are stored in a linked list within a
CFontAttributes object.

The principle of information hiding in Object-Oriented
design model allows accommodating a variety set of
features. This enables the system to use a different design
for the data structure within the CCharAttributes objects
depending on the set of features used in the recognition
process. All it needs is that each design must implement
the following member functions:

GetBPNlnput
This function submits the Character features
representation to be used as input to the Neural
Network.

GetCharCode
This function returns the value of Character
Code desired as corresponding olitput from the
Neural Network.

Serialize
This function implements object persistence so
that the CFontAttributes object together with its
component CCharAttributes objects can be
exported to the Neural Network Generator and
the FSA Recognizer Modules.

It is also specify that CFontAttributes object implements
the member function:

BuildCharAttr
Given the bounding rectangle of a Character
within a Bitmap object, this function builds a
corresponding CCharAttributes object.

4. Neural Network Generator Module

This Module is responsible for building a CBPNetwork
object that encapsulates a Back-Propagation Neural (BPN)
Network. It is actually used to build four BPN Networks
(for the Characters with B, M, E and S Context). The
results of these networks are then exported to be used by
the FSA Recognizer Module.

The Neural Network structure is done such that the user
enters its specifications. Therefore, the number of hidden

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

344

layers, the numbers of Nodes and the type of the output
function in each layer are determined by the user. The user
can also specify if the Nodes use bias terms. Operational
parameters such as the learning rate must also be
specified.

Four BPN Networks (for the Characters with B, M, E and
S Context). The results of these networks are then
exported to be used by the FSA Recognizer Module. The
Neural Network structure is done such that the user enters
its specifications. Therefore, the number of hidden layers,
the numbers of Nodes and the type of the output function
in each layer are determined by the user.

The user can also specify if the Nodes use bias terms.
Operational parameters such as the learning rate must also
be specified.

After selecting the training Characters set, the user can
start the training process while monitoring its
convergence. The user can interrupt the training process to
change the learning rate, or to add more nodes to the
hidden layers, or simply save the Network in a persistent
form to continue training at a later session.

The input to the Network represents the feature parameters
encapsulated in a CCharAttributes object of some
Character, either standard or to be recognized. The output
is the bits representation for the Character code.

The CBPNetwork object maintains a linked list of
CBPNLayer objects. Each of these CBPNLayer objects
maintains an array of objects. The CBPNetwork object
also maintains an array of CTrainingExemplar objects
each of which encapsulates a pair of input and output
vectors and the corresponding Character code. The input
vector is a representation of the Character Attributes as
determined by the Features Extractor Module. For this
purpose, the Module imports the CFontAttributes object
exported by the latter. The main member functions of
CBPNetwork are:

AddTrainingExemplar
Called when defining the Character set to be
used for training the Network.

DoTrainingCycle
Called to perform the Network training.

GetBPNOutput
Called when recognizing a Character within the
scanned document.

Serialize

Called when exporting the Network to the FSA
Recognizer Module.

 The main member functions of CBPNLayer are:

Setlnputs
Sets the inputs at the Nodes of the input layer.

ComputeOutputs
Computes the outputs at the Nodes of the layer.

ComputeErrors
Computes the errors at the Nodes of the output
layer.

BackPropagateErrors
Computes the back-propagated errors.

UpdateWeights
Updates the weights of the connections of the
Nodes in this layer to the Nodes of its previous
layer.

AddNewNode
This function allows for adding new Nodes to the
layer during training as dictated by convergence
behavior.

The last function allows for reaching a near optimal
number of Nodes in the hidden layers, while starting from
a small number and allowing the Network to grow as
necessary. The main member functions of CBPNNode are:

ComputeOutput
Called by the implementation of
CBPNLayer: :ComputeOutputs.

BackPropagateError
Called by the implementation of
CBPNLayer: :BackPropagateErrors.

UpdateWeights
Called by the implementation of
CBPNLayer::UpdateWeights.

AllocateWeights
Used for first-time allocation of memory for the
weights associated with this Node.

ReAllocateWeights
Used to allocate additional memory as required
when new Nodes are added.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.4, April 2008

345

5. The FSA Recognizer Module

The main objective of this module is to compose the
fragments of a character produced by segmentation into a
complete one.

6. Conclusion

A system for recognizing Arabic text is given. It is
adopted the concepts of object oriented programming and
implemented using Visual C++. The principle of
information hiding in Object-Oriented design allows
supporting a variety set of features. This enables the
system to use a different design for the data structure
within the object specified for this purpose as long as a set
of member functions are implemented. For the future
consideration, the proposed system should have the ability
to deal with documents that include some figures and
tables.

Acknowledgments

I would like to thank my colleagues Dr. K. Jambi and Prof.
R. Amer for their advice and support throughout. This
work was supported by King Abdulaziz City for Science
and Technology (KACST - project number AR-15-20).

References
[1] Shirali-Shahreza, M.H., Shirali-Shahreza, S.,

"Persian/Arabic Text Font Estimation using Dots", IEEE
International Symposium on Signal Processing and
Information Technology 2006 , pp. 420–425, Aug. 2006.

[2] Al-Shoshan, A.I., "Arabic OCR Based on Image Invariants",
Geometric Modeling and Imaging--New Trends, 2006, pp.
150-154 , July 2006.

[3] Sarfraz, M., Shahab, S.A., "An efficient scheme for tilt
correction in Arabic OCR system", International Conference
on Computer Graphics, Imaging and Vision: New Trends,
2005, pp. 379–384, July 2005.

[4] Zidouri, A, "ORAN: a basis for an Arabic OCR system",
International Symposium on Intelligent Multimedia, Video
and Speech 2004, pp. 703-706, Oct 2004.

[5] Binkley, D., Ceccato, M., Harman, M., Ricca, F.,
Tonella, P., Loyola Coll., Baltimore, MD, "Tool-Supported
Refactoring of Existing Object-Oriented Code into Aspects",
IEEE Transactions on Software Eng., Volume 32 , Issue 9,
pp. 698 –717, Sept 2006.

[6] Woei-Kae Chen, Yu Chin Cheng, "Teaching Object-
Oriented Programming Laboratory With Computer Game
Programming", IEEE Transactions on Education, Volume 50,
Issue 3, pp. 197–203, Aug 2007.

[7] Debuse, Justin C. W., Stiller, Tony, "Technologies and
Strategies for Integrating Object-Oriented Analysis and
Design Education with Programming", Australian

Conference on Software Engineering, ASWEC 2008 19th, pp.
97–103, March 2008.

[8] Miletzki, U., "Character recognition in practice today and
tomorrow", Proceedings of the Fourth International
Conference on Document Analysis and Recognition, 1997,
vol.2, pp.902-907, Aug. 1997.

[9] Jambi, Kamal, "Recognition of Constrained Handwritten
Arabic Words Without Segmentation", Proceedings of the
6th International Conference on Computer Theory and
Applications, Alexandria, Sept. 1996.

